Verbally closed virtually free subgroups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed BLD-elliptic manifolds have virtually Abelian fundamental groups

We show that a closed, connected, oriented, Riemannian n-manifold, admitting a branched cover of bounded length distortion from R, has a virtually Abelian fundamental group.

متن کامل

Virtually scaling-free adaptive CORDIC rotator

The authors propose a coordinate rotation digital computer (CORDIC) rotator algorithm that eliminates the problems of scale factor compensation and limited range of convergence associated with the classical CORDIC algorithm. In the proposed scheme, depending on the target angle or the initial coordinate of the vector, a scaling by 1 or 1= p 2 is needed that can be realised with minimal hardware...

متن کامل

A Characterisation of Virtually Free Groups

We prove that a finitely generated group G is virtually free if and only if there exists a generating set for G and k > 0 such that all k-locally geodesic words with respect to that generating set are geodesic.

متن کامل

Counting the Closed Subgroups of Profinite Groups

The sets of closed and closed-normal subgroups of a profinite group carry a natural profinite topology. Through a combination of algebraic and topological methods the size of these subgroup spaces is calculated, and the spaces partially classified up to homeomorphism.

متن کامل

Inverse-closed Additive Subgroups of Fields

We describe the additive subgroups of fields which are closed with respect to taking inverses. In particular, in characteristic different from two any such subgroup is either a subfield or the kernel of the trace map of a quadratic subextension of the field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sbornik: Mathematics

سال: 2018

ISSN: 1064-5616,1468-4802

DOI: 10.1070/sm8942